Differentiability v.s. convexity for complementarity functions
نویسندگان
چکیده
It is known that complementarity functions play an important role in dealing with complementarity problems. The most well known complementarity problem is the symmetric cone complementarity problem (SCCP) which includes nonlinear complementarity problem (NCP), semidefinite complementarity problem (SDCP), and second-order cone complementarity problem (SOCCP) as special cases. Moreover, there is also so-called generalized complementarity problem (GCP) in infinite dimensional space. Among the existing NCP-functions, it was observed that there are no differentiable and convex NCP-functions. In particular, Miri and Effati (J Optim Theory Appl 164:723–730, 2015) show that convexity and differentiability cannot hold simultaneously for an NCP-function. In this paper, we further establish that such result also holds for general complementarity functions associated with the GCP.
منابع مشابه
A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملAn Implicit Programming Approach for a Class of Stochastic Mathematical Programs with Complementarity Constraints
In this paper, we consider a class of stochastic mathematical programs in which the complementarity constraints are subject to random factors and the objective function is the mathematical expectation of a smooth function which depends on both upper and lower level variables and random factors. We investigate the existence, uniqueness, and differentiability of the lower level equilibrium define...
متن کاملAnalysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems
For any function f from R to R, one can define a corresponding function on the space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the spectral decomposition. We show that this matrix-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiab...
متن کاملAnalysis of nonsmooth vector-valued functions associated with second-order cones
Let Kn be the Lorentz/second-order cone in R. For any function f from R to R, one can define a corresponding function f soc(x) on R by applying f to the spectral values of the spectral decomposition of x ∈ R with respect to Kn. We show that this vector-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiabi...
متن کاملA note on optimality conditions to interval optimization problems
In this article we examine to necessary and sufficient optimality conditions for interval optimization problems. We introduce a new concept of stationary point for an interval-valued function based on the gH-derivative. We show the importance the this concept from a practical and computational point of view. We introduce a new concept of invexity for gH-differentiable interval-valued function w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Letters
دوره 11 شماره
صفحات -
تاریخ انتشار 2017